Rate of condensation polymerization for monomers having reactivities different from their polymers

Rajeev Goel, Santosh K. Gupta and Anil Kumar *Department of Chemical Engineering, Indian Institute of Technology, Kanpur-208016, India*

aromatic rings, undergoing condensa- $P_m + P_n \xrightarrow{P_m + P_n} P_{m+n}$ tion polymerization exhibit reactivities different from those of higher homodifferent from those of fighter from (1) logues. For example, for phenylene (1) sulphide by Lenz *et al.*¹ showed that and reaction rates are normally evaluatthe monomer molecules have much the monomer molecules have much ed using the equal reactivity
lower reactivities than the dimer, hypothesis^{9,10}: trimer, etc. which all react at the same rate. Challa²⁻⁴ from studies of the of poly(ethylene terephthalate) by the ester-interchange reaction, also found the monomer having a lower reactivity than the polymer molecules. A similar phenomenon was found by Hodgkin⁵ for polyimide formation. In contrast to monomers discussed pre- (3) viously, in the latter case, when one of the amino groups has reacted, the resi- However, when the monomer reacts dual group has a lower reactivity. In- at different rate, then $\arctan Z = [P]_1/[P]_0$ (10) deed, there are several imide monomers for which the reactivity changes are $k_{p_1} = k_{11}/2$ The initial conditions for equation (9) large enough to prevent polymerization⁵. \cdot \cdot \cdot and (10) are:

In the case of aromatic diisocyanates, *k* the reactivity of the residual isocyanate groups depends upon the electron -
withdrawing nature of its substituent⁶, withdrawing nature of its substituent $\ddot{\cdot}$,
and consequently, the functional group if it assumed that all polymer homo-
in marically to give the extent of conand consequently, the functional group if it assumed that all polymer homo-
reactivity changes as the polymeriza-
logues react at the same rate and
wersion $p(=1, N)$ as a function of tion progresses 7.

The reaction rate model presented in this work takes into account the difference in reactivity between monomers $\frac{dV}{dt}$ and $\frac{dV}{dt}$ and $\frac{dV}{dt}$ and polymer molecules. Equations developed herein can be applied to the initial region of condensation polymeri-
= $-(k_{11}-k_{11})[P,1^2-k_{11}]P, (6)$ -b zation, where the equal reactivity hypothesis is strictly not valid⁸ and can be 2σ easily adapted to diisocyanate polymerization.

Condensation polymerization is repre-
the equations for all values of n, one E , 2.0; F, 1.0; G, 0.50; H, 0.20; I, 0.10, sented schematically as a set of infinite finds that: J , 0.05

INTRODUCTION elementary reactions:

$$
P_m + P_n \xrightarrow{k_{p}} P_{m,n}
$$
\n
$$
m, n = 1, 2 \ldots
$$

rate. Chalia⁻¹ from studies of the formation
equilibrium kinetics of the formation
of poly(ethylene terephthalate) by
the ester-interchange reaction, also
found the monomer having a lower
reactivity than the polymer molecules.
A similar phenomenon was found by
Hodokin⁵ for polymide formation. In

$$
r_p = \frac{d[A]}{dt} = -\frac{d}{dt}[-B] = \frac{k_p}{2}[-A] [-B]
$$

 $X = k$

$$
k_{p_{1,1}} = k_{11}/2
$$

$$
k_{p_{m,n}} = k_p \text{ for } m \neq n
$$

$$
= k_p/2 \text{ for } m = n > 1 \tag{5}
$$

$$
\frac{d}{dt}[P_1] = -(2\frac{k_{11}}{2}[P_1]^2 + k_p[P_1][P_2]
$$

$$
+ k_p[P_1][P_3] + ...)
$$

$$
= -(k_{11} - k_p)[P_1]^2 - k_p[P_1][P] \quad (6)
$$

where $[P] \equiv [P_1] + [P_2] + ...$

THEORY AND DISCUSSION Similarly writing equations for *diminary writing* equations for *Figure 1 1/Y versus X for different values* $d[P_2]/dt$, $d[P_3]/dt$ etc. and summing $d[P_1, 4]$ and p and p

(Received) November 1976)
\n
$$
\frac{d[P]}{dt} = -\frac{1}{2}(k_{11} - k_p)[P_1]^2 - \frac{1}{2}k_p[P]^2
$$
\n
$$
\frac{d[P]}{dt} = -\frac{1}{2}(k_{11} - k_p)[P_1]^2 - \frac{1}{2}k_p[P]^2
$$
\n
$$
(7)
$$

Several monomers, specially containing $P_m + P_n \xrightarrow{k_{p,m,n}} P_{m+n}$ Equations (6) and (7) can be rewritten
aromatic rings, undergoing condensa.
Equations (6) and (7) can be rewritten

$$
\frac{dY}{dX} = -\frac{1}{2}(R - 1)Z^2 - \frac{1}{2}Y^2
$$
 (8)

$$
\frac{\mathrm{d}Z}{\mathrm{d}X} = -(R-1)Z^2 - YZ \tag{9}
$$

$$
R = \frac{k_{11}}{k_p},
$$

\n
$$
X = k_p [P]_0 t,
$$

\n
$$
Y = [P] / [P]_0
$$

\nand
$$
Z = [P]_1 / [P]_0
$$
 (10)

$$
Y = Z = 1 \quad \text{at } X = 0 \tag{11}
$$

logues react at the same rate and version, $p(= 1 - Y)$, as a function of

of *R:* A, 100; B, 25.0; C, 10.0; D, 4,0;

Notes to the Editor

$$
\frac{1}{Y} = \frac{[P]_0}{[P]} = 1 + \frac{1}{2} k_p [P]_0 t
$$

$$
= \left(1 + \frac{X}{2}\right) \tag{16}
$$

equal to *R/2*. For small values of X,

there is a curvature and as X annovaches **and Solution** Chemistry, Cornell University Press, there is a curvature and as X approaches \overline{R} REFERENCES Chemistry,' Cornell University,' Cornell University Press, \overline{R} and \overline{R} (Fig. 2015) \overline{R} (Fig. 2016) \overline{R} (Fig. 2016) \overline{R} (Fig. 2016) \overline large values, $1/Y$ (= \overline{DP}) versus X be-
REFERENCES 10 Kumar, A. and Gupta, S. K., 'Fundacomes linear with a slope of 0.5, inde-
nentals of Polymer Science and En-
nentals of Polymer Science and En-

the dimensionless time, X, for diffe-
ture increases as R increases and the 351
tent values of R Figure 1 gives the smaller the value of R the larger is the 2 Challa, G. Makromol. Chem. 1960, rent values of R. *Figure 1* gives the smaller the value of R, the larger is the ² Challa, G. *Makromol. Chem. 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960, 1960* results. The plot for $R = 1$ has been time taken to reach the linear region. ^{38, 105} Challa, G. *Makromol. Chem.* 1960, obtained by integrating equation (3): In the linear region, (*Figure 1*) there is 38, 123 In the linear region, *(Figure 1)* there is 38, 123
a set of parallel lines corresponding to 4 Challa, G. Makromol. Chem. 1960, a set of parallel lines corresponding to 4 Challa, different values of R. This is expected 38, 138 different values of R. This is expected $\frac{38,138}{1000}$ B. Thus is expected the local state of the value of the value of the Values of physically because the larger the value
of R, the faster is the monomer con-
6 Lyman, D. J. in 'Step-Grow sumed and the linear region starts from merization', (Ed D. J. Solomon), the values of X when the monomer is Marcel Dekker, New York, 1972 $=$ 1 the values of X when the monomer is Marcel Dekker, New York, 1972
almost completely consumed For $=$ 7 Bailey, M. E., Kriss, V. and Spaunalmost completely consumed. For curves for $R = 25$ and above, only According to equation (8), the slope small differences in the behaviour are 8 Bhide, B. V. and Sudborough, J. J. of the 1/Y versus X curve for $X \to 0$ is observed observed.
J. Indian Inst. Sci. (A) 1925, 8, 89
9 Flory, P. J. 'Principles of Polymer

pendent of the value of R. The curva-
 $\frac{1}{2}$ Lenz, R. W., Handlovits, C. E. and
Smith, H. A. J. Polym, Sci. 1962, 58,

-
-
-
-
- Lyman, D. J. in 'Step-Growth Poly-
- burgh, *R. G. Ind. Eng. Chem.* 1956,
-
-
- gineering', Tata McGraw-Hill, New Delhi, India, in press

Crystallinity and fusion of low molecular weight poly(ethylene oxide): effect of end-group

Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
(Received 23°March 1977)

of α,ω-hydroxy-poly(ethylene oxide), Ltd (1000, 1500), Hoechst Chemicals notably by Kovacs, Skoulios, Spegt Ltd (2000) and Fluka AG (3000). Beform stacked lamella structures²⁻⁵ in The α, ω -methoxy- and α, ω -ethoxythe end-groups of the poly(ethylene where¹⁰. Infra-red spectroscopy, elesurface layers of the lamella crystals. were used to confirm conversions of the stability of the crystals. Our experi- graphy (g.p.c.). We denote the samples (e.g. alkoxy^{7,8}, acetoxy⁹) lead us to the or E (ethoxy). The g.p.c. data listed in are not unique. (We note a similar the alkoxylation process. stacked lamella structures contain a
viewpoint expressed in ref 2.) Our in-
Melting points $(T_m, Table I)$ were significant amount of non-crystalline viewpoint expressed in ref 2.) Our in-
Melting points $(T_m, Table I)$ were

Many interesting observations have been lene oxide) were obtained from com- lized at 25 ° and 35°C and were found made on low molecular weight fractions mercial sources: Shell Chemical Co. to be independent of T_c . Double maxi-
of α , ω -hydroxy-poly(ethylene oxide), Ltd (1000, 1500), Hoechst Chemicals ma were observed for 1000H and coworkers at Strasbourg¹⁻⁴. Frac- fore use samples were precipitated from this effect is attributable⁴ to fractiona-
tions of \bar{M}_n < 3000 when crystallized dilute solution in benzene by addition tion during th tions of \overline{M}_n < 3000 when crystallized dilute solution in benzene by addition tion during the crystallization process.

from the melt at (say) 25°C typically of iso-octane and thoroughly dried. Because of this compli which the polymer chains are unfolded poly(ethylene oxide) fractions were the preparative processes *(Table 1)*, the $3-5$. In these extended chain crystals prepared by the method described else following remarks are restr prepared by the method described else-
where ¹⁰. In the method spectroscopy, ele-
tions with $\overline{M}_n > 1500$. oxide) chains are concentrated in the mental analysis and end-group analysis The evidence of the lamella spacings It has been argued^{1,6} that the formation hydroxy to alkoxy end-groups exceed-
of hydroxy—hydroxy hydrogen bonds ing 99%. The molecular weights and ins is not affected by the end-groups. of hydroxy-hydroxy hydrogen bonds ing 99%. The molecular weights and tions is not affected by the end-groups.
in the surface layers of the crystalline molecular weight distributions of the Comparison of l with the extende in the surface layers of the crystalline molecular weight distributions of the Comparison of l with the extended-
lamellae is an important factor in deter-fractions were checked against standard chain lengths of the fra lamellae is an important factor in deter-
minimig the mode of crystallization and samples by gel permeation chromato-
ed assuming 64×10^{-3} nm/g as for the mining the mode of crystallization and samples by gel permeation chromato-
the stability of the crystals. Our experiently graphy (g.p.c.). We denote the samples 7:2 helical poly(ethylene oxide) ments with poly(ethylene oxide) frac- by their nominal molecular weights and chain 12] listed in *Table 1* shows that tions having a variety of end-groups by a suffix H (hydroxy), M (methoxy) the lamellae contain extended chains.
(e.g. alkoxy^{7,8}, acetoxy⁹) lead us to the or E (ethoxy). The g.p.c. data listed in Comparison of v_{sp} w view that the experimental results ob-
tained with hydroxy-ended fractions tributions are essentially unchanged by 0.813 cm³/g at $25^{\circ}C^{12}$, shows that the tained with hydroxy-ended fractions tributions are essentially unchanged by $0.813 \text{ cm}^3\text{/g}$ at 25°C^{12} , shows that the algorithm process.
are not unique. (We note a similar the alkoxylation process. stacked l

tention here is to promote this view by measured by dilatometry¹¹ for fractions material.
the presentation of further experimen-
crystallized at several temperatures (T_c , In Table 1 the melting points for a the presentation of further experimen-
tal results obtained with α, ω -methoxy-
Table 1) and were found to be indepen-
given molecular weight are practically tal results obtained with α , ω -methoxy-
and α , ω -ethoxy-poly(ethylene oxide) dent of T_c . Only single melting transi-
identical. The stability of a stacked and α , ω -ethoxy-poly(ethylene oxide) dent of T_c . Only single melting transi-identical. The stability of a stacked tractions.

fractions. Iamella polycrystal is measured by its fractions. dons were observed. Specific volumes lates and polycrystal polycrystal polycrystal polycrystal polycrystal is measured by its measu Samples of α,ω -hydroxy-poly(ethy- *(v_{sp}, Table 1)* were measured at 25[°]C free energy of formation from the

M. J. Fraser, D. R. Cooper and C. Booth by picnometry ¹¹ for the 1500 fractions by picnometry ¹¹ for the 1500 fractions begates by picnometry ¹¹ for the 1500 fractions crystallized at 25[°]C. Lamella spacings *(l, Table 1)* were measured by smallangle X-ray scattering¹¹ at room temperature (~20°C) for samples crystal-35°C) and 1000M $(T_c = 25^\circ \text{ and } 35^\circ \text{C})$:
this effect is attributable⁴ to fractionafrom the melt at (say) 25° C typically of iso-octane and thoroughly dried. Because of this complication, and also
form stacked lamella structures²⁻⁵ in The $\alpha.\omega$ -methoxy- and $\alpha.\omega$ -ethoxy-
because of possible frac